IEEE 2017-2018 Image Processing Projects in Java

Abstract:

Recent studies have shown that a noticeable percentage of web search traffic is about social events. While traditional websites can only show human-edited events, in this paper we present a novel system to automatically detect events from search log data and generate storyboards where the events are arranged chronologically. We chose image search log as the resource for event mining, as search logs can directly reflect people’s interests. To discover events from log data, we present a Smooth Nonnegative Matrix Factorization framework (SNMF) which combines the information of query semantics, temporal correlations, search logs and time continuity. Moreover, we consider the time factor an important element since different events will develop in different time tendencies. In addition, to provide a media-rich and visually appealing storyboard, each event is associated with a set of representative photos arranged along a timeline. These relevant photos are automatically selected from image search results by analyzing image content features. We use celebrities as our test domain, which takes a large percentage of image search traffics. Experiments consisting of web search traffic on 200 celebrities, for a period of six months, show very encouraging results compared with handcrafted editorial storyboards.

Abstract:

Social media sharing Websites allow users to annotate images with free tags, which significantly contribute to the development of the web image retrieval. Tag-based image search is an important method to find images shared by users in social networks. However, how to make the top ranked result relevant and with diversity is challenging. In this paper, we propose a topic diverse ranking approach for tag-based image retrieval with the consideration of promoting the topic coverage performance. First, we construct a tag graph based on the similarity between each tag. Then, the community detection method is conducted to mine the topic community of each tag. After that, inter-community and intra-community ranking are introduced to obtain the final retrieved results. In the inter-community ranking process, an adaptive random walk model is employed to rank the community based on the multi-information of each topic community. Besides, we build an inverted index structure for images to accelerate the searching process. Experimental results on Flickr data set and NUS-Wide data sets show the effectiveness of the proposed approach.

Abstract:

Most of existing models for facial behavior analysis rely on generic classifiers, which fail to generalize well to previously unseen data. This is because of inherent differences in source (training) and target (test) data, mainly caused by variation in subjects' facial morphology, camera views, and so on. All of these account for different contexts in which target and source data are recorded, and thus, may adversely affect the performance of the models learned solely from source data. In this paper, we exploit the notion of domain adaptation and propose a data efficient approach to adapt already learned classifiers to new unseen contexts. Specifically, we build upon the probabilistic framework of Gaussian processes (GPs), and introduce domain-specific GP experts (e.g., for each subject). The model adaptation is facilitated in a probabilistic fashion, by conditioning the target expert on the predictions from multiple source experts. We further exploit the predictive variance of each expert to define an optimal weighting during inference. We evaluate the proposed model on three publicly available data sets for multi-class (MultiPIE) and multi-label (DISFA, FERA2015) facial expression analysis by performing adaptation of two contextual factors: “where” (view) and “who” (subject). In our experiments, the proposed approach consistently outperforms: 1) both source and target classifiers, while using a small number of target examples during the adaptation and 2) related state-of-the-art approaches for supervised domain adaptation.

Abstract:

Social image tag refinement, which aims to improve tag quality by automatically completing the missing tags and rectifying the noise-corrupted ones, is an essential component for social image search. Conventional approaches mainly focus on exploring the visual and tag information, without considering the user information, which often reveals important hints on the (in)correct tags of social images. Towards this end, we propose a novel tri-clustered tensor completion framework to collaboratively explore these three kinds of information to improve the performance of social image tag refinement. Specifically, the inter-relations among users, images and tags are modeled by a tensor, and the intra-relations between users, images and tags are explored by three regularizations respectively. To address the challenges of the super-sparse and large-scale tensor factorization that demands expensive computing and memory cost, we propose a novel tri-clustering method to divide the tensor into a certain number of sub-tensors by simultaneously clustering users, images and tags into a bunch of tri-clusters. And then we investigate two strategies to complete these sub-tensors by considering (in)dependence between the sub-tensors. Experimental results on a real-world social image database demonstrate the superiority of the proposed method compared with the state-of-the-art methods.

Abstract:

In this paper, we propose a novel data hiding algorithm for high dynamic range (HDR) images encoded by the OpenEXR file format. The proposed algorithm exploits each of three 10-bit mantissa fields as an embedding unit in order to conceal k bits of a secret message using an optimal base which produces the least pixel variation. An aggressive bit encoding and decomposition scheme is recommended, which offers a high probability to convey (k + 1) bits without increasing the pixel variation caused by message concealment. In addition, we present a bit inversion embedding strategy to further increase the capacities when the probability of appearance of secret bit “1” is greater than 0.5. Furthermore, we introduce an adaptive data hiding approach for concealing more secret messages in pixels with low luminance, exploiting the features of the human visual system to achieve luminance-aware adaptive data hiding. The stego HDR images produced by our algorithm coincide with the HDR image file format, causing no suspicion from malicious eavesdroppers. The generated stego HDR images and their tone-mapped low dynamic range (LDR) images reveal no perceptual differences when subjected to quantitative testing by visual difference predictor. Our algorithm can resist steganalytic attacks from the HDR and LDR RS and SPAM steganalyzers. We present the first data hiding algorithm for OpenEXR HDR images offering a high embedding rate and producing high visual quality of the stego images. Our algorithm outperforms the current state-of-the-art works.